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Abstract
1.	 Globally, billions of dollars are invested each year to help understand the dynam-
ics of social ecological systems (SES) in bettering both social and environmental 
outcomes. However, there is no scientific consensus on which aspect of an SES is 
most important and urgent to understand; particularly given the realities of lim-
ited time and money.

2.	 Here we use a simulation‐based “value of information” approach to examine where 
research will deliver the most important information for environmental manage-
ment in four SESs representing a range of real‐life environmental issues.

3.	 We find that neither social nor ecological information is consistently the most im-
portant: instead, researchers should focus on understanding the primary effects 
of their management actions.

4.	 Thus, when managers are undertaking social actions the highest research prior-
ity should be understanding the dynamics of social groups. Alternatively, when 
manipulating ecological systems it will be most important to quantify ecological 
population dynamics.

5.	 Synthesis and applications. Our results provide a standard assessment to deter-
mine the uncertain social ecological systems (SES) component with the highest 
expected impact for management outcomes. First, managers should determine 
the structure of their SES by identifying social and ecological nodes. Second, man-
agers should identify the qualitative nature of the network, by determining which 
nodes are linked, but not the strength of those interactions. Finally, managers 
should identify the actions available to them to intervene in the SES. From these 
steps, managers will be able to identify the SES components that are closest to the 
management action(s), and it is these nodes and interactions that should receive 
priority research attention to achieve effective environmental decision making.
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1  | INTRODUC TION

Between 2001 and 2008, annual global spending on environmen-
tal management was close to US$20 billion (Waldron et al., 2013). 
Traditionally, the focus of this spending has been on developing an 
understanding of ecosystems or single species (McRae, Dickson, 
Keitt, & Shah, 2008; Simberloff, 2003). This narrow research ap-
proach has delivered mixed benefits because it omits relevant wider 
system dynamics (Liu et al., 2007). For example, the Convention on 
International Trade in Endangered Species of Wild Fauna and Flora 
(CITES) has often neglected the social motivations and pressures that 
drive the endangered species trade, and this has contributed to its 
failure to protect many species (Lenzen et al., 2012; Wolch & Emel, 
1998). Equally, many marine protected area networks are designed 
on purely biological grounds despite their long‐term success being 
heavily affected by social factors such as social acceptability and fi-
nancial capacity (Christie, 2004; Gill et al., 2017; Mascia et al., 2003).

To improve management outcomes, the characteristics and dy-
namics of the wider social ecological system (SES) are receiving in-
creasing research attention (Bodin, 2017). However, the dynamics 
of these coupled SES systems—how social actors interact over time, 
and the connections between and within social and ecological pro-
cesses—create additional dimensions of uncertainty for environmen-
tal managers (Ostrom, Burger, Field, Norgaard, & Policansky, 1999). 
Research can improve managers’ understanding of these more com-
plex SES models, but this requires funding, and can delay manage-
ment that is often urgently needed. For example, next to nothing 
was known about the “extinct” Australian night parrot Pezoporus 
occidentalis, which was rediscovered in 2013 (Pyke & Ehrlich, 2014). 
Five years later, and despite numerous programs of research, man-
agers are still far from understanding how to protect it (Leseberg, 
nd; Pyke & Ehrlich, 2014). Furthermore, under economic constraints, 
increasing investment in ecological research may come at the cost 
of reduced investment in social research and vice versa. Therefore, 
knowledge acquisition must be prioritised based on an evaluation 
of its expected benefits and costs (Canessa et al., 2015; Grantham 
et al., 2008; Grantham, Wilson, Moilanen, Rebelo, & Possingham, 
2009; Li et al., 2017; Runge, Converse, & Lyons, 2011).

To improve environmental management outcomes, a crucial re-
search question is—what is the value of knowing more about each 
component (hereafter “uncertain system component”) of coupled 
SES? We apply a simulation‐based version of formal “value of infor-
mation” theory (Raiffa & Schlaifer, 1961) to calculate the expected 
value of perfect information regarding each uncertain SES com-
ponent (EVPXI, where X is each uncertain SES component)  (sensu 
Yokota & Thompson, 2004). We then calculate which information—
social or ecological—will deliver the greatest improvement in man-
agement outcomes.

Within the broad field of environmental management, different 
disciplines have argued for research effort to be concentrated on 
different system elements. For example, environmental research has 
traditionally focused on understanding uncertain ecological system 

components (Chadès et al., 2011). Meanwhile, both environmental 
and social fields of research have debated whether research effort 
should focus on understanding the dynamics of either nodes (e.g. 
the management functions of social actors; Marín & Berkes, 2010) or 
interactions (e.g. ecological processes such as connectivity; Pulliam, 
1988; Urban & Keitt, 2001), with few studies contrasting the two 
(Sanchirico & Wilen, 1999). Other approaches, such as structured 
decision making (e.g. Martin, Runge, Nichols, Lubow, & Kendall, 
2009), highlight the importance of understanding and clearly defin-
ing management objectives; as opposed to system dynamics. Our 
contribution in this research compares each of these options, and 
particularly focuses on the relative value of gathering ecological ver-
sus social information. We also assess whether it is more important 
to research the system components that managers are aiming to 
change (i.e., their objectives), or the system components that they 
plan to act upon.

We construct a general model of an SES that is simple enough 
to be analytically tractable, while also containing all the funda-
mental elements of an SES (Bodin & Tengö, 2012) (see Figure 1). 
Our system construction builds on recent research proposing 
network ‘motifs’—simplified, but non‐trivial patterns of intercon-
nections (Bodin & Tengö, 2012), which can be described as the 
basic building blocks of most networks (Milo et al., 2002). To dis-
cover which information is most valuable, we consider four dif-
ferent management problems—two from fisheries and two from 
sustainable agriculture (Figure 2). We designed our four problems 
to investigate the influence of all permutations of action and man-
agement objectives on research priorities (Figure 2). To give two 

F I G U R E  1   Stylised representation of our social ecological 
system (SES) network structure. This structure has two social 
groups (nodes S1 & S2) who interact with two ecological populations 
(nodes E1 & E2). Arrows indicate the direction of potential 
interactions between social groups and ecological populations. 
These dynamics are determined by the behaviour of both the nodes 
and interactions, including the social ecological interactions that 
couple the social and ecological systems
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examples of these permutations: ‘what is the most important ele-
ment of an SES to understand when managers are intervening in a 
social system to achieve an ecological outcome?’ And: ‘what is the 

most important element of an SES to understand when managers 
are intervening in an ecological system to achieve an ecological 
outcome?’

F I G U R E  2  Four different environmental management problems with different management actions and objectives (see Figure 1 
for description of each uncertain social ecological system component). Image credits: Saxby, T.; Mulloway, D.T.; Nastase, E.; Hawkey, J.; 
Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary)
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2  | MATERIAL S AND METHODS

2.1 | Overview of analyses

Our aim is to determine the relative expected value of different types 
of information in socio‐ecological systems (SESs), to guide research 
to inform management actions. We explore this question using four 
SESs with different management objectives and actions (see Figure 2). 
We frame these questions using network theory (note, however, that 
we do not perform any network analysis). Below, we provide a brief 
overview of value of information theory before describing our SESs 
in more detail and then providing details of the modelling approach.

2.2 | Value of information

Before commencing a management project, managers must decide 
whether to reduce uncertainty in a given aspect of the system (i.e., 
to learn about Ixy, qx, Hx, Cxy or rx). We measure the expected value of 
information as the improvement in an outcome when particular in-
formation is known with certainty, compared to when that informa-
tion is unknown (Canessa et al., 2015; Runge et al., 2011). We define 
the value of information following Raiffa and Schlaifer (1961) and 
Yet, Constantinou, Fenton, and Neil (2018). Our SES model consists 
of a set of possible management actions A and a set of uncertain SES 
parameters � with joint probability distribution P(�). For each man-
agement action a ∈ A the model aims to predict the utility of a de-
noted by U(a, �). The expected utility of each management action a is

If the value of the SES parameters is unknown, we can calculate 
the expected utility of each management action and identify which 
action a yields the highest expected utility (Yokota & Thompson, 
2004), that is:

Alternatively, if it were possible to gather perfect information 
about all uncertain SES parameters, then managers could select 
the action that would maximise the value of the management out-
come. Expected utility under this ‘perfect information’ setting is 
given by:

The difference between maximum expected utility with perfect 
information (Equation 3) and maximum expected utility (Equation 2) 
is the expected value of perfect information (EVPI):

In our research setting, we are interested in understanding the value 
of information for individual SES parameters to improve manage-
ment outcomes. We therefore calculate the expected value of per-
fect information on ‘X’ (EVPXI). EVPXI is the difference in expected 
utility of an optimal action taken when the exact value of an uncer-
tain model input (�x) is known (Equation 5) compared to one taken 

knowing only prior information (Equation 2) (Yokota & Thompson, 
2004). We illustrate this case with the following example. Consider a 
division of our uncertain SES parameters into parameter of interest �
x, and the rest of the parameters �−x. The expected benefit if we have 
perfect information about �x is:

That is, we are only calculating the expectation over the un-
known parameter values of �−x, given the value of �x. This formula-
tion allows us to define EVPXI as follows:

Essentially, EVPXI measures the relative benefits of resolving un-
certainty in any one particular uncertain parameter, e.g. ecological 
or social nodes.

2.3 | Systems overview

Our four SESs exhaustively describe potential management ac-
tions and objectives for a very simple SES network motif. We rep-
licate the finite set of motifs described in Bodin and Tengö (2012) 
by replicating the basic network structure (two social and two 
ecological nodes), and assuming uncertain priors—which allows 
us to assess the expected value of information (described above) 
across all parameters. We intend for our results and conclusions 
to be as generalizable as possible; hence, the system models we 
employ are as generic as possible (see Appendix S1 for a detailed 
description of objectives). Managers engage with nodes as this is 
the most commonly observed management intervention, e.g. pay-
ments for environmental services (Ferraro & Kiss, 2002), or re-
stocking wild populations (Aprahamian, Martin Smith, McGinnity, 
McKelvey, & Taylor, 2003). This means that we are not considering 
systems where managers act on interactions. Thus, for example, 
a manager might revegetate an ecological habitat patch, but they 
would not revegetate linear habitat to improve dispersal (Jellinek, 
Parris, McCarthy, Wintle, & Driscoll, 2014). The fundamental 
components of each system model are (a) a discrete‐time, con-
tinuous‐state model of the ecological dynamics; (b) a management 
objective function; and (c) a discrete‐time, discrete‐state model of 
the social dynamics, based on the influence of the management 
action. Below, we outline these components for each of the four 
systems we consider. The range of uncertainty considered in each 
parameter is described in Table 1.

2.4 | System 1

Management problem 1 is based on a territorial use rights fishery 
(Wilen, Cancino, & Uchida, 2012). There are two fishing groups 
(S1 and S2) and two fishery populations (E1 and E2). Each fishing 
group harvests their own fishery (0 ≤ H1 & H2 ≤ 0.4, see Table 1). 
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The fishery populations grow logistically with growth rates r1 and 
r2, and there is dispersal between the populations that is likely 
asymmetric (0 ≤ C12 & C21 ≤ 1). An environmental manager is act-
ing in the system, and their goal is to maximise the equilibrium size 
of the harvested fishery, even if this reduces yields. They might 
associate a higher stock abundance with superior ecosystem func-
tioning or believe that it makes the stock better‐equipped to deal 
with environmental change. To achieve their objective, managers 
intervene in one of the two social groups to encourage or incen-
tivise a permanent harvest reduction of D  =  0.25. Variations on 
this management setting have been observed around the globe. 
For example, in Chile, a co‐management program was instituted 
to stimulate the recovery of shellfish populations. As in our exam-
ple, fishers in Chile voluntarily participate in observing catch limits 
(Castilla & Defeo, 2001). Community based fisheries management 
also features in Japan, where fishing rights apply to the entire sea 
area adjacent to a given fishing village (Yamamoto, 1995).

2.4.1 | Ecological dynamics

The abundance of the fishery population at patch j at time t is de-
noted Ej,t and changes through time as:

Since we are interested in long‐term outcomes, we calculate 
and use the system equilibrium: the vector of E∗

j
 values where all 

Ej,t+1=Ej,t=E∗
j
.

The growth rates rj drive increases in abundance. The stocks are 
demographically linked by the dispersal parameters (Cjg), which denote 
the proportional exchange of individuals. For example, C12 describes 
the proportion of adult fish who move from ecological population 1 to 
ecological population 2. The harvest terms (Hi) indicate the proportion 
of the adult population removed from each population by social group 
i each time step. We constrained the value of Hi between 0 and 0.4 to 
limit catches below the maximum sustainable yield (Punt, Smith, Smith, 
Tuck, & Klaer, 2014) (see Table 1), as the system would otherwise not 

contain a persistent population. These harvest parameters connect the 
social groups with the ecological populations, and therefore encapsu-
late the social ecological interactions. The binary variable up,k =  {0,1} 
describes the influence of management, as described below.

2.4.2 | Management objective

In system 1, managers aim to engage the social system to achieve an 
ecological objective—maximise the equilibrium size of the ecological 
metapopulation:

To do so, managers must choose to intervene with social group 
one (a = 1), or group two (a = 0). The time and resources required 
for the managers to intervene mean that only one group can be 
targeted. As we outline below, the dynamics of the SES are proba-
bilistic, depending on the response of the social groups to the man-
agement intervention. Managers are therefore actually attempting 
to maximise the expected value.

2.4.3 | Social dynamics in response to management

The state of the social system is described by the vector up, where 
p = {1, 2, 3, 4}, whose binary elements uk = {0,1} describe whether 
group k engages in the environmental action. The values of up are 
determined by the management action A, which (as described above) 
denotes whether the managers engage with group one (a  =  1) or 
group two (a = 0).

We model engagement as a random process, where each social 
group has a probability qi of engaging with a management interven-
tion targeted at that group. For example, in this SES, if the managers 
choose to engage with social group one by choosing a = 1, then that 
group will undertake the desired action (reducing their harvest rate) 
with probability q1. Once the group makes its decision, it may influ-
ence group two to similarly engage, with probability I12. This influ-
ence network is characterised by the matrix I:

(7)Ej(t+1) =Ej(t) + rjEj(t)
(
1−Ej(t)

)
−CjgEj(t) −

(
1−Dup,k

)
HiEj(t) +CgjEg(t)

(8)max
A={0,1}

B=E∗
1
+E∗

2

TA B L E  1   Description of social ecological parameter assessed in the value of information analysis

Parameter Range Description Network
Node or 
interaction

r 0.2 ≤ r ≤ 2 Growth rate of ecological population Ecological Node

C 0 ≤ C ≤ 1 Connectivity between ecological 
populations

Ecological Interaction

H 0 ≤ H ≤ 0.4 Harvest of ecological population by social 
nodes

Social ecological Interaction

q 0 ≤ q ≤ 1 Willingness to engage with management Social Node

I 0 ≤ I ≤ 1 Influence of one social node on another Social Interaction

Other parameters        

D 0.25 Management intervention impact    

M 0.25 Management addition or removal of ecologi-
cal population
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The willingness of each group to engage (qi), therefore defines 
the dynamics of the social nodes, and the inter‐group influence Iif 
defines the dynamics of the network.

Given a particular management action a ∈ A, the response of the 
communities is defined by a discrete probability distribution over up:

Thus, to calculate the expected performance of the SES given a 
particular management action a, we calculate B as a function of all up, 
weighted probabilistically using Equations 10–13:

We assume that the management action carries either no net 
cost for the group (either has no cost, or is subsidised by the man-
ager), or generates positive benefits, but that the groups will not 
instigate this action without management intervention. This could 
be because the groups are unaware of the benefits (assuming they 
exist), are reluctant to instigate the action, or lack the capacity to 
begin implementation (Pannell et al., 2006).

2.5 | System 2

The management setting for system 2 is a recreational fishery, where 
managers are planning on restocking a salmon population. In practice, 
this can occur because managers want to (a) facilitate colonization of 
new habitats; (b) restore spawning biomass in severely depleted popu-
lations, (c) compensate for major environmental disturbances such as 
hydroelectric development, or (d) augment an existing fishery to en-
able larger catches (Ritter, 1997; Ward, 2006). For example, in Florida 
in the USA, saltwater recreational fishing is a multi‐billion dollar (US) 
industry, and fish stocking is used to restore depleted stocks (Tringali 
et al., 2008). In our system example there are two salmon populations 
(E1 & E2) and two recreational fisher groups (S1 & S2). Each recreational 
fisher group fishes in their own salmon fishery (H1 & H2). The man-
agement action is to intervene in the ecological system by restocking 
salmon by M = 0.25 in one of the populations. Note that, once again, 
this is a permanent intervention and implies managers will commit to 
an annual restocking rate of 0.25. As with the previous system, the 
management objective is ecological: maximise the equilibrium salmon 
metapopulation (Equation 15). Due to resource constraints, managers 
can only choose one population to restock. In response to the man-
agement action, the recreational fisher groups may choose (with prob-
ability q1 & q2) to increase their salmon harvest by D; undermining the 
management objective. If managers restock their salmon population, 
that fisher group may encourage the other fisher group to also increase 
their salmon harvest with probability Iif. The structure of the SES in 
system 2 is the same as in system 1, however, instead of a social inter-
vention, the managers intervene in the system through the ecological 
populations. The differences in the dynamics of system 2 relative to 
system 1 are outlined below.

The ecological dynamics in system 2 account for the restocking 
of the ecological population by managers. If managers restock eco-
logical population Ej, then group Si will respond by increasing their 
harvest with probability qi, rather than decreasing it. The discrete 
probability distribution for action vector up, p = {1, 2, …, 6} whose 
binary elements uk  =  {0, 1} describe whether group k engages in 
the environmental action and depends on the management action 
are as follows:

(9)I=

⎡
⎢⎢⎣

0 I12

I21 0

⎤
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F I G U R E  3   Illustration of the calculation of the Gini Coefficient, 
which assesses the proportion of the total ecological population 
which occurs in ecological node 1 relative to ecological node 2. 
Red line describes the Lorenz curve, blue line describes the line of 
equality. In this example, ecological node 1 (50% of population) has 
25% of the total ecological metapopulation
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2.6 | System 3

System 3 is an agricultural production system where a biologi-
cal pest (E1 & E2) negatively affects the utilities of two farmers 
(S1 & S2) (Silverstein, 1981). Previous studies have estimated that 
pests and diseases lower crop production by 30%–40% (Thomas, 
1999). To control agricultural pests, managers often try to encour-
age farmers to adopt integrated pest management practices, for 
example, biopesticides or resistant cultivars (Parsa et al., 2014). 
In our system, social ecological interactions occur when farmers 
manage (remove) the pest population located on their farm (H1 & 
H2). The objective of managers is to equitably maximise the utility 
of farmers; they intervene in the system by reducing one of the 
biological pest populations by M  =  0.25. Farmers respond (with 
probability q1 & q2) to that action by decreasing (by D) their own ef-
forts to remove the pest population. Similar to a study by Baggio 
and Hillis (2018), we assume that farmers will make their manage-
ment decision based on information they acquire from their social 
network. This influence of one farmer to encourage a reduction 
in removal effort by the other is controlled by I. The social objec-
tive is assessed by how much the pest populations are minimised, 
modified by the difference between the outcomes for the two 
farmers; it reflects both the negative impact of the pest popula-
tions on the farmers’ productivity, and a preference for equitable 
engagement in environmental management.

The structure of the SES in system 3 is largely the same as in 
systems 1 and 2. In system 3, however, there is a social objective, 
and managers intervene in the ecological system by removing a pro-
portion M of the ecological population in node E1 or E2. If managers 
reduce the biological pest population Ej, then group Si will respond 
by decreasing their own removal with probability qi, rather than in-
creasing it

.

Farmers’ utility is measured as a composite of the inverse size of 
the pest metapopulation (assessed at equilibrium, E∗

j
), and a Gini co-

efficient (Dorfman, 1979) which indicates how equally the two pop-
ulations are reduced. To maximise social utility the pest populations 
would need to be removed completely on both farms. The system 
was assessed as in Equation 23.

The Gini coefficient (G) (Dorfman, 1979) (see Equation 24 and 
Figure 3) was calculated by assessing the proportion of the total 
ecological population (τ + ψ) which occurred in ecological node 1 (τ) 
relative to ecological node 2 (ψ).

The discrete probability distribution for management vector up is as 
described in system 2.

2.7 | System 4

System 4 is based on a non‐timber forestry products (NTFP) ex-
traction system. NTFP harvest has been shown to affect ecological 
processes (Ticktin, 2004), including forest structure and compo-
sition (Ndangalasi, Bitariho, & Dovie, 2007). However, commer-
cial NTFP harvest has been promoted as a conservation strategy 
because it offers local rural people with economic alternatives to 
destructive land uses such as logging and cattle ranching (Ticktin, 
2004). This is the management setting in which we base system 
4. In this system, two social groups (S1 & S2) can extract NTFP 
from their local forest (E1 & E2) or convert the land to agriculture 
by clearing the forest (H1 & H2) (Chopra, 1993). The management 
action is social—managers offer incentives to social groups to de‐
crease land clearing for agriculture (by D), and the objective is so-
cial—to equitably maximise the communities’ utility by increasing 
non‐timber forest products (through increasing the size of the for-
est patches). Groups will engage with managers—decreasing their 
land clearing—with probability qi, and influence the other social 
group to similarly engage with probability Iif. Note that in this sys-
tem, social interactions can amplify the benefits of intervention, 
while in the pest management system social interactions could re-
duce the benefits of an intervention.

The ecological dynamics are the same as specified in system 
1. The social objective was assessed as specified in system 3 
(Equation 23), except that these managers seek to equitably in-
crease the equilibrium forest metapopulation, while the manag-
ers in system 3 sought to equitably reduce the pest population. 
The discrete probability distribution for this action vector up is the 
same as in system 1.

2.8 | Model discretisation

We conducted two EVPXI analyses (described in Section 2.2) in each 
of our four SES. In the first analysis we individually assessed the 
EVPXI of each of the individual five uncertain model inputs Ixy, qx, rx, 
Cxy and Hx. In the second analysis we assessed the EVPXI of pairs of 
uncertain model parameters, grouped according to their character: 
the social inputs (Ixy and qx), the ecological inputs (Cxy and rx), and the 
socio‐ecological inputs (Hx). The parameterisation of these inputs is 
described in Table 1.

To individually assess the relative expected value of each of 
our five uncertain model inputs, we defined each uncertain model 
input of interest �x, x = {1, 2, …, 5}. Each �x input comprises two pa-
rameters (because there are two values for each uncertain input, 

(22)
Ej(t+1) = Ej(t) + rjEj(t)

(
1−Ej(t)

)
−CjgEj(t)

−
(
1−Dup,k

)
HiEj(t) +CgjEg(t) −AMEj(t)

(23)max
A={ 0,1}

B=
(
E∗
1
+E∗

2

) (
1−G

)

(24)G=
�

(�+�)

(25)max
A={0,1 }

B=
(
E∗
1
+E∗

2

) (
1−G

)
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e.g. I12 and I21; or q1 and q2). Each input has a discrete, uniform 
distribution, which samples the full range of possible input values 
at n equally spaced intervals. This creates n2 discrete combinations 
(e.g. combinations of n values of I12 and I21). We then specified b 
replications of the other uncertain model inputs, �−x, −x ∈ {1, 2, …, 
10}. Using random number setting “twister” in Matlab, we gener-
ated a b × �−x matrix of all other parameter values. We then created 
a b × �−x matrix for each of the n2 combinations to give a matrix of 
dimensions n2 × b × �−x. Each row vector of this replicated matrix 
provides a unique value for each �−x (other uncertain model input) 
for each combination of �x (the values for the uncertain model 
input of interest). The two specifications, n and b, define the com-
putational intensity of our analysis. We were able to run the anal-
yses for n = 15 and b = 75, replicated 20 times.

The ecological model was run to equilibrium for each combina-
tion of �x and �−x (1,…, bn2), each management intervention a, where 
a  ∈  A  =  {1,0} depending on whether managers intervene at social 
or ecological node 1 or 2 respectively, and each possible state of 
the social system. The state of the social system is described by ac-
tion vector up and as previously described, is partially determined by 
the initial management decision (A), and partially by the dynamics 
of the social system. For example, in system 1, if both groups are 
persuaded to take action (the first through direct engagement, the 
second through the adoption and influence of the first), the action 
vector will be u  =  [1,1]. The size of the ecological metapopulation 
at equilibrium under each model discretisation and possible state of 
the social system up was used to calculate EVPXI as described previ-
ously. The characteristics of each of our four SESs will determine the 
potential for management actions to affect expected utility—as the 
characteristics of each system are different, the magnitude by which 
expected utility can improve is not constant across our systems. To 
be able to compare the value of information across our systems, 
we standardised EVPXI by the maximum observed metapopulation 
across all discretisations (n) and replications (b) for each system.

3  | RESULTS

We evaluated the EVPXI of each type of social ecological informa-
tion in four SES with different management actions and objectives 
(Figure 2). Systems 1 and 2 are fisheries examples; in both cases 
managers have an ecological objective, but in system 1 managers 
influence the network through the social group while in system 2 
managers influence the network through the ecological population. 
Systems 3 and 4 are sustainable agriculture examples. Managers 
pursue social (primarily economic) objectives—in system 3 they un-
dertake a social action, while in system 4 they undertake an ecologi-
cal action.

Our EVPXI analyses showed that neither ecological nor social 
information is inherently more valuable for management: social in-
formation is most valuable in systems 1 and 4 (Figure 4), and eco-
logical information is most valuable in systems 2 and 3. Regardless 
of the SES model, action or management objective, the highest 

F I G U R E  4  Expected value of partial information, or perfect 
information regarding X (EVPXI, where X is an uncertain social 
ecological system model component), in four social ecological systems 
(see Figure 2). Social uncertain components: q is willingness of a 
social group to participate in management, I is the influence of one 
social group on the other; Ecological uncertain components: r is the 
ecological population growth rate; C is ecological connectivity; Social 
ecological uncertain components: H is the interaction of social groups 
with ecological populations. Error bars describe upper and lower 
quartiles. When interpreting the relative value of information, note 
that the ranking past the first EVPXI is uninformative. Subsequent 
rankings would require the re‐evaluation of subsequent EVPXIs once 
the first EVPXI has been addressed
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value of information was consistently associated with the uncertain 
component that was most directly affected by the management ac-
tion (Figure 4). For example, managers intervene in the social nodes 
in problems 1 and 4 (Figure 2, left column), and it is therefore most 
important to understand each group's willingness to engage with 
managers (social node component q). In problems 2 and 3, where 
managers engage the SES through the ecological nodes, the highest 
EVPXI concerns the growth rate of the salmon populations (ecological 
node component r), and the connectivity between the two invasive 
species’ populations (ecological interaction component C). A sensitiv-
ity analysis of fixed parameters M and D confirmed that results are 
robust to changes in these parameter values (see Appendix S2).

4  | DISCUSSION

This is the first evaluation of the value of information in a dynamic 
SES network. Our results can be summarised as: ‘learn about the 
system‐lever that you plan to pull’. Although intuitive, our results are 
at odds with current, widespread research practices: not to consider 
management actions (or even, necessarily, objectives) when deciding 
where to prioritise research effort. For example, research effort into 
the aforementioned night parrot first concentrated on improving 
understanding of the bird's biology (Pyke & Ehrlich, 2014), without 
reference to specific management actions that might make use of 
such information.

Neither the social nor ecological components in our analysis 
consistently displayed a higher value of information. Their relative 
importance depended on which was being targeted by management 
actions. This result can be explained by the conditional nature of 
information. For example, in our first fishery problem (System 1), 
the management action involves engaging with a fishing group to 
reduce harvests. Only if engagement is successful (with probability 
qx), can the effects spread to the non‐engaged fishing group (with 
probability Ixy). This latter process of social influence (Ixy) will only 
ever be relevant if the initial group engages with the managers (qx), 
and Ixy is therefore only conditionally important. By a similar argu-
ment, the socio‐ecological connection (Hx) is also irrelevant if the 
intervention fails. The highest EVPXI is therefore associated with 
qx, not Ixy or Hx. If the initial action fails, then the process by which 
interventions propagate through the social network (its secondary 
impact) is not important. The more distant the parameter from the 
point of intervention, the lower its EVPXI. In general, this means that 
when management actions are social, then the highest EVPXI will be 
social; when management actions are ecological, the highest EVPXI 
will be ecological.

Unlike previous analyses that focused on the value of infor-
mation in social or ecological systems in isolation from each other 
(Barnes, Lynham, Kalberg, & Leung, 2016; Chadès et al., 2011), our 
approach considers research priorities in a coupled SES. This explicit 
comparison allows us to conclude that neither social nor ecological 
information is more important than the other per se. Thus, contrary 
to a historical focus on environmental information (Clarke, 1995; 

Fahrig & Merriam, 1994; Noss, 1990), and a more recent push to 
consider social information (Dickman, 2010; Mascia et al., 2003); en-
vironmental managers need to understand the actions available to 
them before they can identify which information to prioritise.

Surprisingly, system components closest to the management 
objective were not as important as system components closest 
to the management action. This result suggests that, while man-
agement objectives may change, the relative value of information 
remains intrinsic to the management action. The fact that EVPXI is 
not highest for those components close to management objectives 
contrasts with the focus of structured decision‐making, which 
places primary emphasis on determining management objectives, 
e.g. the goals of stakeholders (Martin et al., 2009). We do not see 
this as a disagreement, since the goals of structured decision‐mak-
ing are much broader than simply evaluating the value of particular 
forms of information. Moreover, our conditional‐importance inter-
pretation presumably means that highest EVPXI will be associated 
with those parameters that link management actions with man-
agement objectives, and that parameters which are only indirectly 
linked should have low (or zero) EVPXI. Our analyses are not suffi-
cient to observe such a phenomenon, since the networks are very 
small and most parameters directly link actions with objectives.

Our results can also be framed in terms of the primary versus 
secondary impacts of policy—we find that the primary effects of pol-
icy should be given first research priority. This finding is at odds with 
recent research in the field of economics, which has focused on the 
secondary impacts of policies, for example, the ‘rebound effect’ in 
energy markets and ‘equilibrium sorting’ models in housing markets 
(Herring & Roy, 2007; Kuminoff, Smith, & Timmins, 2013). Our result 
has further relevance for policy decisions, as technological and lo-
gistical constraints will limit managers’ ability to change their actions 
in the short term (Cundiff, Fike, Parrish, & Alwang, 2009) whereas 
policy priorities (objectives) are often subject to greater short‐term 
variability (Rodríguez et al., 2006).

On average, we find that the interactions in SES networks are 
relatively unimportant because they represent secondary processes. 
Our findings are at odds with the perceived importance of ‘influence’ 
in social network analysis, as a specific component of ‘social capital’ 
(Lin, 1999). In our analysis, influence (social interaction, I) is always 
secondary in importance to q, which determines how likely a social 
group is to engage in environmental management. Although our 
model captures the essential elements of a connected SES, it is possi-
ble that the simple four‐node geometry undervalues the importance 
of connections. In particular, large interaction networks can exhibit 
highly nonlinear dynamics that our model may not capture, such as 
the percolation threshold observed in complex networks (Newman 
& Watts, 1999). Such dynamics could dramatically increase the value 
of information associated with interactions, or with specific parts of 
the interaction network. However, our results suggest that, on av-
erage, information on interactions would still be less important than 
information on nodes. The value of information reflects its ability 
to alter management decisions. Because management will gener-
ally alter the characteristics of the nodes, rather than interactions, 
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events at the first node will still have to occur for the large number of 
interactions to matter. Moreover, unless we assume interactions are 
all the same strength (a strong assumption), each must be learned 
about separately. Therefore, while collectively interactions may be 
important, individually they may remain of secondary importance—
even in complex networks.

The lessons from our results can be generalised to other man-
aged and uncertain SES. We summarise these lessons as a standard 
assessment for managers to follow to determine the uncertain SES 
component with the highest expected impact for management 
outcomes. First, managers should determine the structure of their 
SES, by identifying social and ecological nodes. Second, they should 
identify the qualitative nature of the network, by determining which 
nodes are linked, but not the strength of those interactions. Third, 
they should identify the actions available to them (the managers) 
to intervene in the SES. From these steps, managers will be able to 
identify the SES components that are closest to the management 
action(s), and it is these nodes and interactions that should receive 
priority research attention. This standardised assessment will be 
most relevant in cases with ‘simple’ SES structures, e.g. systems with 
limited nodes and interactions. We limited our analysis to a tractably 
small SES because multi‐dimensional value of information analysis 
is computationally intensive; our current analysis is already five‐di-
mensional. However, the general interpretation of our results can be 
extrapolated to inform EVPXI in larger systems without the need for 
a formal value of information analysis—if managers can determine 
their available management actions and key system nodes. In the 
case of more complex SES, inferences about the EVPXI of system 
components may still be possible using motifs (Milo et al., 2002). If 
managers can identify dominant motifs in their SES, these motifs 
could form the basis of an EVPXI assessment.

In our analysis we estimated EVPXI. As with previous analyses 
(Costello et al., 2010; Johnson, Jensen, Madsen, & Williams, 2014; 
Runge et al., 2011), we focus on the benefits of additional informa-
tion, rather than the costs of acquiring that information (but see 
Essington, Sanchirico, & Baskett, 2018). However, for environmental 
managers to make an informed decision regarding which uncertain 
component to investigate further, the relative costs of acquiring dif-
ferent types of information must be considered. These costs may 
include financial or time costs associated with gathering sample 
data. Other relevant factors that may increase overall cost include 
sampling feasibility, the level of expertise required to sample, and 
the reliability or reproducibility of sampling. These costs can be eas-
ily incorporated into the existing analysis by proportionally dimin-
ishing the EVPXI of information that is more expensive to collect. 
Alternatively, it is possible to calculate the expected value of partial 
sample information, which calculates the benefits of acquiring im-
perfect information on each model component.

In our EVPXI analysis, we assume a uniform prior distribution for 
all uncertain system components. This assumption implies managers 
know nothing about the components or structure of the system and 
allows us to imitate complete uncertainty. However, this approach 
may overstate the amount of uncertainty typically present in an 

SES, as decision makers may have more information about some 
SES elements and less about others. It is also possible that uncer-
tainty may be endogenous with respect to SES structure (i.e. the 
motif). For example, if managers are intervening in the social sys-
tem, they may have more information about social system elements: 
reducing the EVPXI for social parameters. This indicates that the 
more that is known about a given SES, the more nuance is required 
when assessing EVPXI. Future efforts should test the impact on 
management outcomes of uncertain SES components in situations 
where informative priors are available. Priors could be elicited in a 
workshop context to capture expert's knowledge. Coupled with a 
sensitivity analysis, this approach would allow analysts to study the 
influence of prior information on the expected value of information. 
Alternatively, informative priors could be incorporated through the 
use of motifs (Bodin & Tengö, 2012; Milo et al., 2002). As described 
previously, motifs can be considered the basic building blocks of a 
network. However, it is worth noting that the relevance of any single 
motif may be limited, since its contribution to the overall dynamics 
will be moderated by its interactions with the broader SES network.

We show that to improve environmental management, research 
should systematically focus on improving understanding of the un-
certain SES component that is most directly affected by manage-
ment actions. Contrary to the assumptions of different subfields of 
environmental management, the value of information is not intrinsic 
to the character (social or ecological) of system nodes or interactions. 
Similarly, in contrast with the orthodoxy of structured decision‐mak-
ing, value of information is not related to management objectives. 
Thus, our results show that when managers are undertaking social 
actions (e.g., engaging with fishers to increase stock levels in a fish-
ery) their highest research priority should be understanding the dy-
namics of social groups. Alternatively, when manipulating ecological 
systems (e.g., controlling invasive species), it will be most important 
to understand the dynamics of ecological populations. Our insights 
provide fundamental and practical decision support for addressing 
ever‐present uncertainty that impedes effective environmental de-
cision making worldwide.
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